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Why is neutron structure at large x important?

New method for extracting neutron from inclusive data

d/u ratio

generalized nuclear smearing formula

applicable in DIS and resonance regions

Outline

isospin dependence of duality (& higher twists)

Nuclear corrections at finite Q2

future comparison with BONUS data



d/u ratio as x    1



Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon

SU(6) spin-flavor symmetry

proton wave function
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SU(6) spin-flavor symmetry

proton wave function
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Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon



scalar diquark dominance

=⇒
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has larger energy thanM∆ > MN =⇒ (qq)1 (qq)0

scalar diquark dominant in            limitx → 1=⇒
.
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since only u quarks couple to scalar diquarks
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Feynman 1972,  Close 1973,  Close/Thomas 1988



hard gluon exchange
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at large x, helicity of struck quark = helicity of hadron 
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Duality in the Neutron?
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Fig. 13. Proton F2 structure function in the ! (top) and S11 (bottom) resonance regions from Jefferson Lab Hall C, compared

with the scaling curve from Ref. [7]. The resonances move to higher " with increasing Q2, which ranges from ∼ 0.5GeV2

(smallest " values) to ∼ 4.5GeV2 (largest " values).

higherQ2 values. It is difficult to evaluate precisely the equivalence of the two ifQ2 evolution [60] is not

taken into account. Furthermore, the resonance data and scaling curves, although at the same " or #′, are
at different x and sensitive therefore to different parton distributions. A more stringent test of the scaling

behavior of the resonances would compare the resonance data with fundamental scaling predictions for

the same low-Q2, high-x values as the data.

Such predictions are now commonly available from several groups around the world, for instance,

the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Martin, Roberts, Stirling, and

Thorne (MRST) [62]; Gluck, Reya, andVogt (GRV) [63]; and Blümlein and Böttcher [64], to name a few.

These groups provide results from global QCD fits to a full range of hard scattering processes—including

lepton–nucleon deep inelastic scattering, prompt photon production, Drell–Yan measurements, jet pro-

duction, etc.—to extract quark and gluon distribution functions (PDFs) for the proton. The idea of such

global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into agreement

for a wide range of processes. These PDF-based analyses include pQCD radiative corrections which give

rise to logarithmicQ2 dependence of the structure function. In this report, we use parameterizations from

all of these groups, choosing in each case the most straightforward implementation for our needs. It is

not expected that this choice affects any of the results presented here.

∆

S11

Bloom-Gilman duality well established for the proton

Niculescu et al., PRL 85 (2000) 1182, 1185
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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,

Christy et al. (2005)



resonance spectrumF
p

2

how much of this region is leading twist ?

Psaker, WM, Christy, Keppel,
Phys. Rev. C 78 (2008) 025206

JLab Hall C

*

*



obey DGLAP-like evolution equations, similar to PDFs

can follow evolution of specific resonance (region)
with      in pQCD framework!Q2

dMn(∆x, Q2)

d log Q2
=

αs

2π

(

P ′

(n) ⊗ Mn

)

(∆x, Q2)

where modified splitting function is

P ′

(n)(z, αs) = zn PNS,S(z, αs)

truncated moments  allow study of restricted regions in x
within pQCD in well-defined, systematic way

Mn(∆x, Q2) =

∫
∆x

dx xn−2 F2(x, Q2)



Psaker, WM, Christy, Keppel,
Phys. Rev. C 78 (2008) 025206

entire
resonance

region

analysis in terms of “truncated moments”



small     HT∆

larger       HTS11

higher twists  < 10-15%  for Q2 > 1 GeV
2

Psaker, WM, Christy, Keppel,
Phys. Rev. C 78 (2008) 025206



Close, Isgur,  PLB 509 (2001) 81

Minimum condition for duality

at least one complete set of even and odd 
parity resonances must be summed over

In NR Quark Model, even and odd parity states correspond
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

Close, WM,  PRC 68 (2003) 035210

Proton sum saturated by lower-lying resonances

expect duality to appear earlier for p than n



Is duality in the proton a coincidence?

consider symmetric nucleon wave function

cat’s ears diagram  (4-fermion higher twist ~        )    1/Q2
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need to test duality in the neutron!

proton

neutron
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No  FREE  neutron targets
(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective” neutron target

BUT  deuteron is a nucleus,  and F d
2 != F

p
2

+ F
n
2

nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information                                                           

need to correct for  “nuclear EMC effect”



Nuclear Effects in the Deuteron



F d
2 (x, Q2) =

∫

x
dy f(y, γ) FN

2 (x/y,Q2)

nuclear  “impulse approximation’’

incoherent scattering from individual nucleons in d

A!"#$k ,q %!i$q2&!"k#"$k2#m2%&!"q#

#2$k!&kq#"#k"&kq#!%%, $8c%

A!"#'$k ,q %!#im$q2g!#g"'"2q#$k!g"'#k"g!'%%.
$8d%

Here k is the interacting quark four-momentum, and m is its

mass. We use the notation &!"kq(&!"#'k
#q'. $The com-

plete forward scattering amplitude would also contain a

crossed photon process which we do not consider here, since

in the subsequent model calculations we focus on valence

quark distributions.% The function H(k ,p) represents the soft
quark-nucleon interaction. Since one is calculating the

imaginary part of the forward scattering amplitude, the inte-

gration over the quark momentum k is constrained by )
functions which put both the scattered quark and the nonin-

teracting spectator system on-mass-shell:

dk̃(
d4k

$2*%4
2*)+$k"q %2#m2,2*)+$p#k %2#mS

2,

$k2#m2%2
,

$9%

where mS
2!(p#k)2 is the invariant mass squared of the

spectator system.

Taking the trace over the quark spin indices we find

Tr+Hr!",!A!"#H
#"A!"#'H

#', $10%

where H# and H#' are vector and tensor coefficients, respec-

tively. The general structure of H# and H#' can be deduced

from the transformation properties of the truncated nucleon

tensor Ĝ!" and the tensors A!"# and A!"#' . Namely, from

A!"#* (k ,q)!A"!#(k ,q) and A!"#( k̃ , q̃)!#A!"#(k ,q), we

have

H#$p ,k %!#PH#$ p̃ , k̃ %P†, $11a%

H#$p ,k %!$TH#$ p̃ , k̃ %T †%*, $11b%

H#$p ,k %!-0H
#†$p ,k %-0 . $11c%

Similarly, since A!"#'* (k ,q)!A"!#'(k ,q) and A
!"#'( k̃ , q̃ )

!A!"#'(k ,q), one finds

H#'$p ,k %!PH#'$ p̃ , k̃ %P†, $12a%

H#'$p ,k %!#$TH#'$ p̃ , k̃ %T†%*, $12b%

H#'$p ,k %!-0H
#'†$p ,k %-0 . $12c%

With these constraints, the tensors H# and H#' can be pro-

jected onto Dirac and Lorentz bases as follows:

H#!p#-5$p” g1"k”g2%"k#-5$p” g3"k”g4%
"i-5./0p

/k0$p#g5"k#g6%"-#-5g7

"i-5./#$p/g8"k/g9%, $13a%

H#'!$p#k'#p'k#%./0p
/k0 f 1"$p#./'#p'./#%

$$p/ f 2"k/ f 3%"$k#./'#k'./#%$p/ f 4"k/ f 5%

".#' f 6"&/0#'p
/k0-5$p” f 7"k” f 8%

"&/0#'-5-
0$p/ f 9"k/ f 10%, $13b%

where the functions g1•••9 and f 1•••10 are scalar functions of
p and k .

Performing the integration over k in Eq. $7% and using
Eqs. $13%, we obtain expressions for the truncated structure
functions G (i) in terms of the nonperturbative coefficient

functions f i and gi . The explicit forms of these are given in

Appendix I. From Eq. $4% we then obtain the leading twist
contributions to the truncated nucleon tensor Ĝ!" . It is im-

portant to note that at leading twist the non-gauge-invariant

contributions to Ĝ!" vanish, so that the expansion in Eq. $4%
is the most general one which is consistent with the gauge

invariance of the hadronic tensor.

III. NUCLEAR STRUCTURE FUNCTIONS

Our discussion of polarized deep-inelastic scattering from

nuclei is restricted to the nuclear impulse approximation, il-

lustrated in Fig. 1. Nuclear effects which go beyond the im-

pulse approximation include final state interactions between

the nuclear debris of the struck nucleon +17,, corrections due
to meson exchange currents +18–20, and nuclear shadowing
$see +21–24, and references therein%. Since we are interested
in the medium- and large-x regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing for x%0.1,
will not be relevant. In addition, it has been argued +6, that
meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since

their main contribution comes from pions.

Within the impulse approximation, deep-inelastic scatter-

ing from a polarized nucleus with spin 1/2 or 1 is then de-

scribed as a two-step process, in terms of the virtual photon-

nucleon interaction, parametrized by the truncated

antisymmetric nucleon tensor Ĝ!"(p ,q), and the polarized

nucleon-nucleus scattering amplitude Â(p ,P ,S). The anti-

FIG. 1. DIS from a polarized nucleus in the impulse approxima-

tion. The nucleus, virtual nucleon, and photon momenta are denoted

by P , p , and q , respectively, and S stands for the nuclear spin

vector. The upper blob represents the truncated antisymmetric

nucleon tensor Ĝ!" , while the lower one corresponds to the polar-

ized nucleon-nucleus amplitude Â .
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(good approx. at x >> 0)
N=p+n

+ δ(off)F d
2

           Kulagin, WM, PRC 77 (2008) 015210

at finite     , smearing function depends also on parameterQ2

γ = |q|/q0 =
√

1 + 4M2x2/Q2

nucleon momentum

(“smearing function”)
distribution in d off-shell

correction
(~1%)



N momentum distributions in d

ψd(p)deuteron wave function

ε = εd −
"p 2

2M
deuteron separation energy

f(y, γ) =
∫

d3p

(2π)3
|ψd(p)|2 δ

(
y − 1− ε + γpz

M

)

× 1
γ2

[
1 +

γ2 − 1
y2

(
1 +

2ε

M
+

#p 2

2M2
(1− 3p̂2

z)
)]

approaches usual nonrelativistic momentum 
distribution in           limitγ → 1

weak binding approximation (WBA):
expand amplitudes to order !p 2/M2



for most kinematics γ ! 2

broader with
increasing γ

Kahn, WM, Kulagin, PRC 79, 035205 (2009)

N momentum distributions in d



Off-shell correction

effect≤ 1 − 2 %
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F
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2 δ
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F
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2 off-shell N structure function

negative energy components of ψd

WM, Schreiber, Thomas
PLB 335 (1994) 11
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EMC effect in deuteron

larger EMC effect (smaller d/N ratio) at x ~ 0.5-0.6
with binding + off-shell corrections

*Kulagin, Petti
NPA765 (2006)126

*

#

# Frankfurt, Strikman
light-cone model
(no binding)

can significantly affect neutron extraction 



deuteron wave function dependence

mild dependence for x < 0.8-0.85

EMC effect in deuteron



* most PDFs assume no nuclear corrections

symmetry breaking
mechanism remains
unknown!

large uncertainty from 
nuclear effects in deuteron

(range of nuclear models*)
beyond x ~ 0.5

x

SU(6)

scalar diquark

hard gluon



Extraction of Neutron
Structure Function



can one reconstruct (“unsmear”) neutron resonance 
structure from deuteron data?

Fermi motion smears out
resonance structure

Fermi smearing in the deuteron

usual “multiplicative” unsmearing method does not work
for “bumpy” data or which change sign (spin-dep. SFs)



Unsmearing - additive method

calculated      depends on input 

extracted n depends on input n ...  cyclic argument

F d
2 Fn

2

Solution:  iteration procedure 

define difference     between smeared and free SFs1.

first guess for  2.

3. after one iteration, gives

4. repeat until convergence obtained

subtract              from d data: 0. F
d
2 → F

d
2 − δ

(off)
F

d
2δ

(off)
F

d
2

Fn(0)
2

Fn(1)
2 = Fn(0)

2 + (F̃n
2 − F̃n(0)

2 )

∆(0) = F̃n(0)
2 − Fn

2

F d
2 − F̃ p

2 = F̃n
2 ≡ f ⊗ Fn

2 ≡ Fn
2 + ∆

∆



F d
2 constructed from known      and       inputsF p

2 Fn
2

(using leading twist MRST parameterization)

rapid convergence in DIS region

Unsmearing - test of convergence

Fn(0)
2 = 0

initial guess

Kahn, WM,
PRC 79 (2009) 035205



F d
2 constructed from known      and       inputsF p

2 Fn
2

(using MAID resonance parameterization)

can reconstruct almost arbitrary shape

Fn(0)
2 = 0

initial guess

Unsmearing - test of convergence

Kahn, WM,
PRC 79 (2009) 035205

*

even faster convergence
 if choose 

*
Fn(0)

2 = F p
2



Unsmearing - Q  dependence2

important to use correct     dependence in extractionγ

does not converge
to correct shape

important also in DIS region
(do not have resonance “benchmarks”)

Kahn, WM,
PRC 79 (2009) 035205



Unsmearing spin-dependent 
structure functions



Data extraction

run 50 sample extractions, calculate RMS error

vary d data points by Gaussians 
(proton data smeared, so errors very small)

neutron errors

1 iteration
Q2 = 1.7 GeV2

* Malace et al. (E00-116)
arXiv:0905.2374 [nucl-ex]

*
*



relatively stable results after only 2 iterations!

* Malace et al. (E00-116)
arXiv:0905.2374 [nucl-ex]

*
*2 iterations

Q2 = 1.7 GeV2

excellent agreement of reconstructed d with data

Data extraction



1 iteration
Q2 = 4.5 GeV2

Data extraction



2 iterations
Q2 = 4.5 GeV2

clear neutron resonance structure visible

Data extraction



1 iteration Q2 = 6.4 GeV2

Data extraction



2 iterations Q2 = 6.4 GeV2

Data extraction



dependence on initial guess for n

Q2 = 5 GeV2

results converge eventually, but errors increase
for more iterations

Data extraction



Duality test

comparison with leading twist (MRST) 
parameterization + target mass corrections



neutron HT indeed larger than proton!
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neutron

proton
smallest HT
     for ∆

S11

largest HT
    for

consistent with quark model expectations

Duality test



Limitations of method

Need data up to x = 1
usually not a problem - unless cut d quasi-elastic tail

Difficult to use on sparse data sets

discontinuities in d data sharply magnified in n

Some dependence on starting point for iteration
convergence faster with judicious first guess for n 

Method limited to convolution representation
corrections beyond convolution to be evaluated



Summary

Test of duality in the neutron

New unsmearing method for extracting neutron SFs

first(?) extraction in resonance and DIS regions

Nuclear corrections in deuteron computed at finite Q
through generalized convolution

2

violations larger in neutron than in proton
(as expected from quark models)

need to estimate systematic errors from 
nuclear corrections

Comparison with BONUS data will test methodology 



The End


